Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 11450, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794114

ABSTRACT

Size segregation in granular materials is a universal phenomenon popularly known as the Brazil nut effect (BNE), from the tendency of larger nuts to end on the top of a shaken container. In nature, fast granular flows bear many similarities with well-studied mixing processes. Instead, much slower phenomena, such as the accumulation of ferromanganese nodules (FN) on the seafloor, have been attributed to the BNE but remain essentially unexplained. Here we document, for the first time, the BNE on sub-millimetre particles in pelagic sediment and propose a size segregation model for the surface mixed layer of bioturbated sediments. Our model explains the size distribution of FN seeds, pointing to a uniform segregation mechanism over sizes ranging from < 1 mm to > 1 cm, which does not depend on selective ingestion by feeding organisms. In addition to explaining FN nucleation, our model has important implications for microfossil dating and the mechanism underlying sedimentary records of the Earth's magnetic field.


Subject(s)
Bertholletia , Nuts
2.
Sci Rep ; 8(1): 10147, 2018 07 05.
Article in English | MEDLINE | ID: mdl-29976984

ABSTRACT

Paleomagnetic directional data were obtained from fourteen 0 to 2 Ma old lava flows at Basse-Terre Island (Guadeloupe, French West Indies). Five reversed polarity flows are consistent with their Matuyama age between 1.6-1.5 Ma and 875-790 ka while the ages of the other nine normal polarity units tie them to the Olduvai subchron and the Brunhes Chron. These directions have been combined with previous results obtained from Basse-Terre Island. The overall mean direction (D = -1.2°, I = 31.4°, α95 = 3.3°) obtained from the 39 non-transitional flows from Basse-Terre Island is indistinguishable from the expected geocentric axial dipole value (D = 0°, I = 29.8°). The dispersion measured from the angular standard deviation of the Virtual Geomagnetic Poles (VGPs) was found to be close to, but smaller than the predictions of geomagnetic models. Together with further directions from the nearby Martinique Island, the 45 directions obtained within the Brunhes chron provide the most robust estimate of the statistical distribution of paleosecular variation (PSV) at this latitude. The sequence of directions shows episodes of high amplitude secular variation that are coeval with several geomagnetic events including the last reversal documented by five transitional directions. Finally, three lava flows have recorded a transitional behavior which could be link to two excursions, the Laguna del Sello (at ~340 ka) and the Pringle Falls (at ~210 ka) events.

3.
Geochem Geophys Geosyst ; 19(11): 4130-4142, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30774561

ABSTRACT

Sampling of sediment cores using plastic U-channels has made possible the acquisition of detailed records of paleomagnetic secular variation, geomagnetic polarity, environmental magnetic studies, and relative paleointensity over the past several million years. U-channel measurements provide the great advantage of rapid measurements of long sediment cores, but the signal resolution is attenuated by the response function of the magnetometer sensors, which therefore restrains the recovery of rapid and large-amplitude field changes. Here we focus on the suitability of the dynamics of reversals and excursions derived from U-channel measurements. We compare successive individual paleomagnetic directions of 1.5 cm × 1.5 cm × 1.5 cm cubic discrete samples with those of a 1.5-m equivalent U-channel sample train obtained by placing the samples adjacent to each other. We use varying excursion and transition lengths and generate transitional directions that resemble those of the most detailed paleomagnetic records. Excursions with opposite polarity directions recorded over less than 7.5 cm are barely detected in U-channel measurements. Regarding reversals, U-channel measurements smooth the signal of low-resolution records and generate artificial transitional directions. Despite producing misleading similarities with the overall structure of transition records, longer transitional intervals fail also to reproduce the complexity of field changes. Finally, we test the convolution of magnetization by different response functions. The simulation reveals that even small response function changes can generate significant differences in results.

4.
Theranostics ; 7(18): 4618-4631, 2017.
Article in English | MEDLINE | ID: mdl-29158849

ABSTRACT

In this study, biologically synthesized iron oxide nanoparticles, called magnetosomes, are made fully biocompatible by removing potentially toxic organic bacterial residues such as endotoxins at magnetosome mineral core surfaces and by coating such surface with poly-L-lysine, leading to magnetosomes-poly-L-lysine (M-PLL). M-PLL antitumor efficacy is compared with that of chemically synthesized iron oxide nanoparticles (IONPs) currently used for magnetic hyperthermia. M-PLL and IONPs are tested for the treatment of glioblastoma, a dreadful cancer, in which intratumor nanoparticle administration is clinically relevant, using a mouse allograft model of murine glioma (GL-261 cell line). A magnetic hyperthermia treatment protocol is proposed, in which 25 µg in iron of nanoparticles per mm3 of tumor are administered and exposed to 11 to 15 magnetic sessions during which an alternating magnetic field of 198 kHz and 11 to 31 mT is applied for 30 minutes to attempt reaching temperatures of 43-46 °C. M-PLL are characterized by a larger specific absorption rate (SAR of 40 W/gFe compared to 26 W/gFe for IONPs as measured during the first magnetic session), a lower strength of the applied magnetic field required for reaching a target temperature of 43-46 °C (11 to 27 mT compared with 22 to 31 mT for IONPs), a lower number of mice re-administered (4 compared to 6 for IONPs), a longer residence time within tumours (5 days compared to 1 day for IONPs), and a less scattered distribution in the tumour. M-PLL lead to higher antitumor efficacy with full tumor disappearances achieved in 50% of mice compared to 20% for IONPs. This is ascribed to better ability of M-PLL, at equal iron concentrations, to maintain tumor temperatures at 43-46°C over a longer period of times.


Subject(s)
Glioblastoma/therapy , Magnetosomes/chemistry , Animals , Cell Line, Tumor , Female , Glioblastoma/chemistry , Glioma/therapy , Hyperthermia, Induced/methods , Magnetic Fields , Mice , Nanomedicine/methods , Nanoparticles/chemistry
5.
J Geophys Res Solid Earth ; 121(11): 7716-7741, 2016 11.
Article in English | MEDLINE | ID: mdl-28163989

ABSTRACT

Geomagnetic dipole moment variations associated with polarity reversals and excursions are expressed by large changes of the cosmogenic nuclide beryllium-10 (10Be) production rates. Authigenic 10Be/9Be ratios (proxy of atmospheric 10Be production) from oceanic cores therefore complete the classical information derived from relative paleointensity (RPI) records. This study presents new authigenic 10Be/9Be ratio results obtained from cores MD05-2920 and MD05-2930 collected in the west equatorial Pacific Ocean. Be ratios from cores MD05-2920, MD05-2930 and MD90-0961 have been stacked and averaged. Variations of the authigenic 10Be/9Be ratio are analyzed and compared with the geomagnetic dipole low series reported from global RPI stacks. The largest 10Be overproduction episodes are related to dipole field collapses (below a threshold of 2 × 1022 Am2) associated with the Brunhes/Matuyama reversal, the Laschamp (41 ka) excursion, and the Iceland Basin event (190 ka). Other significant 10Be production peaks are correlated to geomagnetic excursions reported in literature. The record was then calibrated by using absolute dipole moment values drawn from the Geomagia and Pint paleointensity value databases. The 10Be-derived geomagnetic dipole moment record, independent from sedimentary paleomagnetic data, covers the Brunhes-Matuyama transition and the whole Brunhes Chron. It provides new and complementary data on the amplitude and timing of millennial-scale geomagnetic dipole moment variations and particularly on dipole moment collapses triggering polarity instabilities.

6.
Rev Geophys ; 54(2): 410-446, 2016 Jun.
Article in English | MEDLINE | ID: mdl-31423490

ABSTRACT

Polarity reversals of the geomagnetic field are a major feature of the Earth's dynamo. Questions remain regarding the dynamical processes that give rise to reversals and the properties of the geomagnetic field during a polarity transition. A large number of paleomagnetic reversal records have been acquired during the past 50 years in order to better constrain the structure and geometry of the transitional field. In addition, over the past two decades, numerical dynamo simulations have also provided insights into the reversal mechanism. Yet despite the large paleomagnetic database, controversial interpretations of records of the transitional field persist; they result from two characteristics inherent to all reversals, both of which are detrimental to an ambiguous analysis. On the one hand, the reversal process is rapid and requires adequate temporal resolution. On the other hand, weak field intensities during a reversal can affect the fidelity of magnetic recording in sedimentary records. This paper is aimed at reviewing critically the main reversal features derived from paleomagnetic records and at analyzing some of these features in light of numerical simulations. We discuss in detail the fidelity of the signal extracted from paleomagnetic records and pay special attention to their resolution with respect to the timing and mechanisms involved in the magnetization process. Records from marine sediments dominate the database. They give rise to transitional field models that often lead to overinterpret the data. Consequently, we attempt to separate robust results (and their subsequent interpretations) from those that do not stand on a strong observational footing. Finally, we discuss new avenues that should favor progress to better characterize and understand transitional field behavior.

7.
Nature ; 490(7418): 89-93, 2012 Oct 04.
Article in English | MEDLINE | ID: mdl-23038471

ABSTRACT

No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments.

8.
Phys Rev Lett ; 102(14): 144503, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19392444

ABSTRACT

We show that a model, recently used to describe all the dynamical regimes of the magnetic field generated by the dynamo effect in the von Kármán sodium experiment, also provides a simple explanation of the reversals of Earth's magnetic field, despite strong differences between both systems. The validity of the model relies on the smallness of the magnetic Prandtl number.

9.
Nature ; 435(7043): 802-5, 2005 Jun 09.
Article in English | MEDLINE | ID: mdl-15944701

ABSTRACT

Independent records of relative magnetic palaeointensity from sediment cores in different areas of the world can be stacked together to extract the evolution of the geomagnetic dipole moment and thus provide information regarding the processes governing the geodynamo. So far, this procedure has been limited to the past 800,000 years (800 kyr; ref. 3), which does not include any geomagnetic reversals. Here we present a composite curve that shows the evolution of the dipole moment during the past two million years. This reconstruction is in good agreement with the absolute dipole moments derived from volcanic lavas, which were used for calibration. We show that, at least during this period, the time-averaged field was higher during periods without reversals but the amplitude of the short-term oscillations remained the same. As a consequence, few intervals of very low intensity, and thus fewer instabilities, are expected during periods with a strong average dipole moment, whereas more excursions and reversals are expected during periods of weak field intensity. We also observe that the axial dipole begins to decay 60-80 kyr before reversals, but rebuilds itself in the opposite direction in only a few thousand years.

SELECTION OF CITATIONS
SEARCH DETAIL
...